Influence of cytoskeletal structure and mechanics on epithelial cell injury during cyclic airway reopening.
نویسندگان
چکیده
Although patients with acute respiratory distress syndrome require mechanical ventilation, these ventilators often exacerbate the existing lung injury. For example, the cyclic closure and reopening of fluid-filled airways during ventilation can cause epithelial cell (EpC) necrosis and barrier disruption. Although much work has focused on minimizing the injurious mechanical forces generated during ventilation, an alternative approach is to make the EpC less susceptible to injury by altering the cell's intrinsic biomechanical/biostructural properties. In this study, we hypothesized that alterations in cytoskeletal structure and mechanics can be used to reduce the cell's susceptibility to injury during airway reopening. EpC were treated with jasplakinolide to stabilize actin filaments or latrunculin A to depolymerize actin and then exposed to cyclic airway reopening conditions at room temperature using a previously developed in vitro cell culture model. Actin stabilization did not affect cell viability but significantly improved cell adhesion primarily due to the development of more numerous focal adhesions. Surprisingly, actin depolymerization significantly improved both cell viability and cell adhesion but weakened focal adhesions. Optical tweezer based measurements of the EpC's micromechanical properties indicate that although latrunculin-treated cells are softer, they also have increased viscous damping properties. To further investigate the effect of "fluidization" on cell injury, experiments were also conducted at 37 degrees C. Although cells held at 37 degrees C exhibited no changes in cytoskeletal structure, they did exhibit increased viscous damping properties and improved cell viability. We conclude that fluidization of the actin cytoskeleton makes the EpC less susceptible to the injurious mechanical forces generated during cyclic airway reopening.
منابع مشابه
Influence of airway wall compliance on epithelial cell injury and adhesion during interfacial flows.
Interfacial flows during cyclic airway reopening are an important source of ventilator-induced lung injury. However, it is not known how changes in airway wall compliance influence cell injury during airway reopening. We used an in vitro model of airway reopening in a compliant microchannel to investigate how airway wall stiffness influences epithelial cell injury. Epithelial cells were grown o...
متن کاملBiomechanics of liquid-epithelium interactions in pulmonary airways.
The delicate structure of the lung epithelium makes it susceptible to surface tension induced injury. For example, the cyclic reopening of collapsed and/or fluid-filled airways during the ventilation of injured lungs generates hydrodynamic forces that further damage the epithelium and exacerbate lung injury. The interactions responsible for epithelial injury during airway reopening are fundamen...
متن کاملInfluence of airway diameter and cell confluence on epithelial cell injury in an in vitro model of airway reopening.
Recent advances in the ventilation of patients with acute respiratory distress syndrome (ARDS), including ventilation at low lung volumes, have resulted in a decreased mortality rate. However, even low-lung volume ventilation may exacerbate lung injury due to the cyclic opening and closing of fluid-occluded airways. Specifically, the hydrodynamic stresses generated during airway reopening may r...
متن کاملImage-based finite element modeling of alveolar epithelial cell injury during airway reopening.
The acute respiratory distress syndrome (ARDS) is characterized by fluid accumulation in small pulmonary airways. The reopening of these fluid-filled airways involves the propagation of an air-liquid interface that exerts injurious hydrodynamic stresses on the epithelial cells (EpC) lining the airway walls. Previous experimental studies have demonstrated that these hydrodynamic stresses may cau...
متن کاملMechanisms of surface-tension-induced epithelial cell damage in a model of pulmonary airway reopening.
Airway collapse and reopening due to mechanical ventilation exerts mechanical stress on airway walls and injures surfactant-compromised lungs. The reopening of a collapsed airway was modeled experimentally and computationally by the progression of a semi-infinite bubble in a narrow fluid-occluded channel. The extent of injury caused by bubble progression to pulmonary epithelial cells lining the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 297 5 شماره
صفحات -
تاریخ انتشار 2009